The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, caring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language(s), 3) social sciences, 4) experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours), while the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—are compulsory and central to the philosophy of the programme.

These IB DP subject briefs illustrate four key course components.
I. Course description and aims
II. Curriculum model overview
III. Assessment model
IV. Sample questions

I. Course description and aims

The IB DP mathematics standard level (SL) course focuses on introducing important mathematical concepts through the development of mathematical techniques. The intention is to introduce students to these concepts in a comprehensible and coherent way, rather than insisting on the mathematical rigour required for mathematics HL. Students should, wherever possible, apply the mathematical knowledge they have acquired to solve realistic problems set in an appropriate context.

The internally assessed exploration offers students the opportunity for developing independence in their mathematical learning. Students are encouraged to take a considered approach to various mathematical activities and to explore different mathematical ideas. The exploration also allows students to work without the time constraints of a written examination and to develop the skills they need for communicating mathematical ideas.

The aims of all mathematics courses in group 5 are to enable students to:

- enjoy mathematics, and develop an appreciation of the elegance and power of mathematics
- develop an understanding of the principles and nature of mathematics
- communicate clearly and confidently in a variety of contexts
- develop logical, critical and creative thinking, and patience and persistence in problem-solving
- employ and refine their powers of abstraction and generalization
- apply and transfer skills to alternative situations, to other areas of knowledge and to future developments
- appreciate how developments in technology and mathematics have influenced each other
- appreciate the moral, social and ethical implications arising from the work of mathematicians and the applications of mathematics
- appreciate the international dimension in mathematics through an awareness of the universality of mathematics and its multicultural and historical perspectives
- appreciate the contribution of mathematics to other disciplines, and as a particular “area of knowledge” in the TOK course.

II. Curriculum model overview

<table>
<thead>
<tr>
<th>Component</th>
<th>Recommended teaching hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 1 Algebra</td>
<td>9</td>
</tr>
<tr>
<td>Topic 2 Functions and equations</td>
<td>24</td>
</tr>
<tr>
<td>Topic 3 Circular functions and trigonometry</td>
<td>16</td>
</tr>
<tr>
<td>Topic 4 Vectors</td>
<td>16</td>
</tr>
</tbody>
</table>
III. Assessment model

Having followed the mathematics standard level course, students will be expected to demonstrate the following.

- Knowledge and understanding: recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of familiar and unfamiliar contexts.
- Problem-solving: recall, select and use their knowledge of mathematical skills, results and models in both real and abstract contexts to solve problems.
- Communication and interpretation: transform common realistic contexts into mathematics; comment on the context; sketch or draw mathematical diagrams, graphs or constructions both on paper and using technology; record methods, solutions and conclusions using standardized notation.
- Technology: use technology, accurately, appropriately and efficiently both to explore new ideas and to solve problems.
- Reasoning: construct mathematical arguments through use of precise statements, logical deduction and inference, and by the manipulation of mathematical expressions.
- Inquiry approaches: investigate unfamiliar situations, both abstract and real-world, involving organizing and analysing information, making conjectures, drawing conclusions and testing their validity.

Assessment at a glance

<table>
<thead>
<tr>
<th>Type of assessment</th>
<th>Format of assessment</th>
<th>Time (hours)</th>
<th>Weighting of final grade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>Section A: Compulsory short-response questions based on the whole syllabus. Section B: Compulsory extended-response questions based on the whole syllabus.</td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>Paper 1 (non-calculator)</td>
<td>Section A: Compulsory short-response questions based on the whole syllabus. Section B: Compulsory extended-response questions based on the whole syllabus.</td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>Paper 2 (graphical display calculator required)</td>
<td>Section A: Compulsory short-response questions based on the whole syllabus. Section B: Compulsory extended-response questions based on the whole syllabus.</td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>Internal</td>
<td>Internal assessment in mathematics SL is an individual exploration. This is a piece of written work that involves investigating an area of mathematics.</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

IV. Sample questions

- A data set has a mean of 20 and a standard deviation of 6.

 A) Each value in the data set has 10 added to it. Write down the value of
 i. the new mean;
 ii. the new standard deviation.

 B) Each value in the original data set is multiplied by 10.
 i. Write down the value of the new mean.
 ii. Find the value of the new variance.

- Given that \(f(x) = \frac{1}{x} \), answer the following.

 A) Find the first four derivatives of \(f(x) \).

 B) Write an expression for \(f^n \) in terms of \(x \) and \(n \).